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ABSTRACT 

The local growth r a t e  for whistler waves propagating a t  an 

angle to  the geomagnetic field i s  combined with model r ay  path cal-  

culations to  es t imate  the wave growth along the whistler path. This 

growth r a t e  depends cr i t ical ly  upon the equatorial  plane distribution 

of electrons in  the few hundreds of electron volt energy range. 

a variety of conditions apparently satisfied by the magnetosphere 

electron velocity distribution, a region of whistler growth near  the 

equatorial plane exists and is sufficient to make a whistler mode 

unstable overall  a s  it bounces back and forth a c r o s s  the equatorial 

plane between reflection points. 

by resonant par t ic le  instabilities a r e  t reated.  

Under 

Only unducted whist lers  generated 
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1. INTRODUCTION 

Following work by Dragt (1961), Wentzel ( l961) ,  Cornwall (1965), 

and Pear l s te in  (1964), Andronov and Trakhtengerts (1964) and Chang 

others ,  Kennel and Petschek (1966), (hereinafter called K P )  suggested 

that non-linear wave-particle scattering l imited the intensity of trapped 

par t ic les  i n  the magnetosphere to  the cr i t ical  intensity for  instability of 

the waves bouncing back and forth i n  the magnetosphere.  Ion cyclotron 

waves were  shown to  couple strongly to ions, whistler waves to  e lectrons.  

Recently, Cornwall (private communications) has  reached the same 

conclusion for  the trapped proton distribution. 

The arguments  in K P  were based on the propert ies  of waves 

propagating paral le l  to  the magnetic l ines  of force.  Since the index of 

refract ion of both whistler and ion cyclotron waves is anisotropic with 

respec t  to wave normal  angle t o  the magnetic field, it seems ve ry  likely 

that, although the group velocity of these  waves remains  directed 

essentially along the magnetic field, the propagation vector k will not 

remain  paral le l  to the magnetic l ines  of force,  as the waves propagate. 

Consequently, Thorne and Kennel (1 966), (hereinafter called T),  under- 

took a study of the propagation of whist lers  i n  the magnetosphere with 

the  a i m  of clarifying this question. They suggested that the wave normal  

angle to the magnetic field 8 increases  a s  unducted whist lers  propagate 

away f rom the geomagnetic equatorial plane (where they a r e  generated by 

the whistler cyclotron instability ( K P ) )  and may propagate near ly  normal  

to the field a t  high latitudes. In addition, Kennel (1966) (hereinafter 

cal led K)  generalized the whistler mode instability analysis of K P  to  

whis t le rs  propagating at an  angle to  the field. When 8 becomes 

sufficiently large,  whistler mode waves a r e  damped by resonant in te r -  

act ions with low energy electrons, which we call  Landau electrons.  

interact ion is small when e i s  small, and the cr i t ical  angle at which 

Landau damping dominates cyclotron growth is a strong function of the 

energy spectrum of resonant par t ic les .  

N 

This 

This note couples the propagation 



analysis of T with the instability analysis of K .  W e  have not exhausted 

all aspects  of this question but have concentrated on establishing the 

conditions f o r  which whistler mode wave growth will occur along a rea l i s t ic  

unducted wave t ra jec tory  which includes changes in  wave normal  angle 

number of resonant e lectrons,  and s o  on. 
8 ,  

Landau electrons,  which have energies of a few hundred electron 

volts in  the equatorial plane, play the c r i t i ca l  ro le  in  determining stabil i ty 

We therefore  devote some attention to the questions of the i r  intensity and 

distribution in velocity space.  

have will probably be most  pronounced fo r  the au ro ra l  l ines of force ,  

where  considerable fluxes of low energy ( 1  keV) electrons have been 

observed (O'Brien and Taylor, 1964, Sharp  et a l . ,  1964, 1965). Landau 

electrons a r e  probably not numerous in  the region of stably trapped fluxes 

of relatively high energy electrons (> 40 keV) located a t  lower lati tudes 

than the aurora l  zone (F rank ,  1965). This  region we sha l l  call the Van 

Allen zone. 

electron distribution is  s t i l l  somewhat s p a r s e .  

Whatever effects Landau electrons may 

To our knowledge, detailed experimental  data on the Landau 

Nevertheless,  even i f  Landau electrons a r e  reasonably numerous,  

whistler mode growth can still occur along a rea l i s t ic  unducted wave 

t ra jec tory .  

for  para l le l  propagating whist lers  at the equatorial  plane. 

calculate  the growth along the ray  paths computed in  T fo r  whist lers  

s tar t ing in  the equatDrial plane propagating near ly  para l le l  to  the  magnetic 

field. 

energy spectrum va r i e s  as  1/E between M 40 keV and M 100 eV, we find 

that net wave growth occurs  along these whist ler  ray t r a j e c t o r i e s .  How- 

ever ,  a 1/E spectrum shows damping overal l ,  so  that unducted whist ler  

growth depends cr i t ical ly  on the Landau electron intensity.  

K P  argued that the maximum incremental  wave growth occurs  

W e  therefore  

Making the relatively pessimist ic  assumption that  the electron 
2 

3 

In Section 1. 1,  we review very  br ief ly  the propagation s tudies  

of T. In Section 1. 2, we discuss  quali tatively the condition for  net wave 

growth along a ray  t ra jec tory ,  and in  Section 1. 3 ,  we descr ibe  the 

analysis in  K of the whistler mode growth r a t e .  F o r  m o r e  detai ls ,  the  

r eade r  should re fer  to the or iginal  papers .  In  Section 2. 2,  we d iscuss  

-2 - 



in a prel iminary way what properties can be infer red  about magneto- 

spheric  Landau electrons.  In Section 2.  3 we present  numerical  calculations 

of the growth r a t e  as  a function of location along the ray path. 

1. 1 Unducted Whistler Mode Propagation in Cold Plasma 
Geometr ical  Optics Limit 

F o r  a review of the general  whistler mode propagation problem 

s e e  the book by Helliwell (1965). 

analysis  of T .  F o r  the index of refraction, n, they took the cold plasma 

quasi-longitudinal expression (Allis and Buchsbaum, 1963) in the l imit  

of a whistler frequency w well below the electron cyclotron frequency 

9 :  

H e r e  we discuss  the res ; i l t s  of the 

? 

where  c = speed of light, ,k = wave number w - - 44XmN-f , the electron 

p lasma frequency, and c o s 0  is  the angle between the wave-vector k and 

the magnetic field B. Notice that n2 is  proportional to N/B cos 0 . The 

geomagnetic field s t rength B variation with geomagnetic latitude X was 

approximated by a dipole, 

P- - 

where B(0) is the magnetic field strength in  the equatorial plane X = 0. 

In the equatorial  plane, the density N was taken as 

NO = constant everywhere 
B ( 0 )  

This  distribution is roughly that found f rom whistler dispers ion measure-  

ments  (Helliwell, 1965). On the other  hand N was assumed constant 

along the magnetic l ines of force, the density distribution for  an isothermal  

p lasma in  magnetostatic equilibrium. 

equatorial  plane. 

in  T .  

siutuations where N/B i s  a maximum in the equatorial plane on a given 

line of force.  

Thus N/B decreases  away f rom the 

This  distribution is justified in somewhat more  detail  

Thei r  resu l t s  probably hold at leas t  qualitatively for  all those 

- 3 -  



One of the principal conclusions drawn f rom the above propagation 

studies is  that unducted whist lers  which a r e  initially generated propagating 

paral le l  to  the lines of force  by an instability nea r  the equatorial  plane can  

only propagate away f rom the equatorial plane by changing their  wave normal  

angle. 

waves propagate into regions of increasing index of refract ion n. 

dec reases  with increasing I A l  s o  that cos 0 must  decrease ,  and 9 

increase  as  the wave propagates away f rom the equatorial  plane to  higher 

latitudes. This conclusion has  significant consequences for  the study of 

resonant particle wave growth, since new se ts  of par t ic les  can  resonate  

with non-parallel whis t le rs .  In par t icular ,  the reader  should re fer  to  

the discussion of the Landau resonance in  Section 1. 3 following. 

Consider the following intuitive argument  in geometr ical  optics; 

N/B 

One of the conclusions of this paper i s  that the region of gain f o r  

a whistler wave i s  res t r ic ted  to  near  the equatorial plane, and thus that 

whist lers  propagate out of the region of gain. 

re turns  some portion of the wave intensity back and forth a c r o s s  the 

equatorial  plane, l a rge  whist ler  amplitudes can build up by this convective 

feedback process .  One such mechanism, involving the lower hybrid 

resonance, is  discussed in  T. 

sufficiently intense to  produce gain enough to  overcome los ses  of wave 

energy due to imperfect  reflection o r  other p rocesses  whist ler  growth 

will occur .  We shall  s imulate  all wave lo s ses  by an effective reflection 

coefficient, and wr i te  the approximate condition that the whist ler  intensity 

remain  constant. 

If a reflection mechanism 

If the intensity of t rapped electrons is  

1. 2 Condition for  a Steady Wave Distribution 

The following equation descr ibes  the changes in  intensity W(w) 

of a given mode following a ray  t ra jec tory  in  a weakly spatially 

inhomogeneous medium 

(1.4) 

where VG (a, N x) 

Y (a, 0 ,  5) 
i s  the local group velocity of a given wave packet, 

is  the growth o r  damping r a t e  along the r ay  path, and v ( w ,  N X )  
rv 

, 
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I .  
represents  schematically the loss of whistler energy f rom the magneto- 

spheric  cavity due to  imperfect  contaiment along the l ines of force, 

imperfect  reflection and any other effects of this nature.  

Equation (1.4)  corresponds to  the lowest o rde r  WKB solution for  

wave propagation. 

such as turning points where k(x) = 0, a r e  not included in (1 .4) .  More- 

over, all effects due to  the non-linear coupling between different whist lers  

have systematically been disregarded.  

the Van Allen Zone in  KP, though it remains  to  be proven for  the intense 

a u r o r a l  zone whistler flux which probably can be inferred f rom the high 

p r  ecipitation r a t e s  there .  

Effects due to singularit ies in  the WKB solution, 

N N  

This assumption was justified for  

The condition fo r  a steady s ta te  wave distribution, a W / a  t = 0, 

i s  immediately 

where  ds  = V dx is a n  element of r ay  path and V ( s )  is the magni- 

tude of the group velocity. 

back and forth between imperfect reflection points +s1 and -s l .  We 

simulate  ~ ( s )  by a t e r m  In 1/R [6 ( s  - s l )  + 6 ( s  + s l ) ] ,  where R 

is  the effective reflection coefficient. 

approximately closed and whistlers re turn  to  the same  location in the 

equatorial  plane the condition that W be single valued and that the gain 

y(s) make up for wave losses  at  the reflection points is 

G. - G 
N 

Suppose that unducted whist lers  bounce 

When the wave t ra jectory is 

o r  

"G 
y = y- In 1 / R  

- 5 -  



where  y and V a r e  typical values,  and L is roughly the  length of 

the r ay  path between reflection points. Thus, when R < 0 , the growth 

r a t e  integrated along a ray  path mus t  be positive to maintain a steady 

wave distribution. Instability occurs  when 

G 

> In 1/R. 

1. 3 Stability of Whistler Waves Propagating at a n  Angle to 
the Magnetic Field 

H e r e  we review the resul ts  of a stability analysis  by Kennel (1966). 

When the plasma velocity distribution consis ts  of a dense cold plasm" ofi 

which is superimposed a tenuous high-energy component, the propagation 

and polarization may be t rea ted  as above by cold-plasma theory,  whereas  

the resonant  growth o r  damping is a small correct ion,  which involves the 

details  of the velocity distribution. Cold-plasma theory predicts  that  as 

the angle between the wave vector and the magnetic field inc reases  f rom 

zero,  the whistler polarizaiton changes f r o m  pure  right-hand c i r cu la r  to  

elliptical. 

high-energy tail having velocit ies along the l ines of force  which Doppler- 

shift the wave frequency to  their  gyrofrequency maintain a constant phase 

with respec t  t o  the  rotating wave fields,  and therefore  exchange energy 

with the wave efficiently. 

resonance.  

of the gyrofrequency produces a s imi la r ,  though somewhat weaker ,  

resonance.  We cal l  all these  cyclotron resonances .  The  condition that 

a n  electron be in cyclotron resonance i s  k , ,v , ,  = w t m Q ,  where  v,, i s  

the velocity component paral le l  to the magnetic field, 

gyrofrequency, and m a non-zero integer .  This  express ion  may be 

t rans la ted  using (1. 1 )  into one involving the energy in  para l le l  motion 

necessa ry  for cyclotron resonance,  Ec(m) 

In the pure right-hand case ,  those electrons in  the diffuse 

This  resonance we ca l l  the  principal cyclotron 

With elliptical polarization, a Doppler - shift t o  any multiple 

Q the electron 

R 
B Z -  

w 

- 2 where  m is the electron mass, B /87rN i s  the  magnet ic  energy pe r  

par t ic le .  Evidently Ec(m) is  the minimum total  energy necessa ry  f o r  

-6 - 
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cyclotron resonance, since resonant electrons may have any energy 

whatsoever in motion perpendicular to  the magnetic field. Since p 
is ordinarily a la rge  parameter ,  the whistler cyclotron resonances 

affect pr imari ly  the high-energy component of the Van Allen electron 

distribution, with energies  well above BL/8aN. 
When 8 f 0, t he re  can then be a resonance of an  entirely 

different charac te r  f r o m  the cyclotron resonances.  Those electrons 

travell ing along the l ines of force with the paral le l  phase velocity of 

the wave, w/k,, = w/k cos  8 , stay in  phase with the sinusoidal electro- 

magnetic field s t ruc ture  of the wave paral le l  to the magnetic field 

and can exchange energy with the wave. This resonance, analogous 

to that found in p lasmas  without external magnetic fields, we call  the 

Landau resonance. The resonance condition, k,, v,, - w = 0, may be 

t ransformed to  an  expression involving the energy E necessary  for 

Landau resonance 
L 

The ra t io  of Landau to  cyclotron energy for a given frequency wave i s  

-- EL ( 1 . 1 0 )  Ec (m> - A  
At very  low frequencies,  

sma l l e r  than the cyclotron energies.  

p -  0 0 ,  the Landau energy is very much 

The growth r a t e  when 8 f 0 is  a sum of the par t ia l  growth r a t e s  

due to  interactions with each set of resonant par t ic les .  

growth r a t e  in turn  depends upon a n  appropriate velocity space gradient 

in  the  distribution of electrons at  each resonance and a positive definite 

weighting function which depends pr imar i ly  upon 8. 

the weighting function picks out the important resonances.  

each  par t ia l  growth r a t e  is fixed by the velocity space gradient alone, 

while the magnitude of each partial  growth ra te  is fixed by both the 

number  of resonant par t ic les  and the weighting function there .  We 

d i scuss  intuitively f i r s t  the behavior of the par t ia l  growth ra tes  a t  the 

cyclotron resonances,  and then at the Landau resonance. 

Each par t ia l  

The magnitude of 

The sign of 



F o r  paral le l  propagation, 0 = 0, the above mentioned weighting 

functions a r e  zero at  all but the m = -1 principal cyclotron resonance. 

F o r  small  angles 8 , this  resonance continues to  dominate all o thers .  

The sign of the par t ia l  growth r a t e  at this  resonance i s  determined by 

the gradient of the pitch angle distribution of resonant electrons (Sagdeev 

and Shafranov (1961)). When the re  a r e  m o r e  par t ic les  with flat pitches 

(velocity nearly perpendic'ular to the field) than with small (near ly  para l le l ) ,  

this resonance yields growth. 

magnetosphere, due to  the loss  of small pitch par t ic les  to the a tmosphere .  

An anisotropy of this  sign exis ts  in  the 

The sign of the par t ia l  growth r a t e  at each cyclotron resonance, 

in fact ,  i s  fixed by the pitch angle anisotropy. 

spheric ( m i r r o r )  electron distribution, the negative (m < 0)  cyclotron 

resonances contribute growth, while the positive (m > 0) cyclotron 

resonances contribute damping. However, the weighting functions 

weight negative resonances m o r e  heavily, s o  that  for  the above pitch 

angle distribution, the net  effect of all cyclotron resonances is  wave 

growth. 

to the gradient with respec t  to paral le l  velocity 8 F/8 1vll1 of the 

resonant electron distribution t imes  a positive definite weighting function 

which approaches 0 a s  8 --f 0 .  Parallel waves have no Landau resonance.  

W e  repeat:  the sign of the  Landau growth r a t e  does not depend upon a 

pitch angle gradient, as i n  the cyclotron case ,  but essent ia l ly  on a 

gradient with respect  to the paral le l  velocity component, 8 F/8 ~ v l l ~  . 
If 8 F / a  I v,, I > 0 a t  some  phase velocity, th i s  partial growth r a t e  will 

be positive (unstable).  8 F /8  l v l l \  < 0 implies  a damping contribution. 

If the pitch angle distribution i s  not too skewed, 

sensibly l ike the gradient with respec t  to  pa r t i c l e  energy. Then, s ince  

we expect the electron energy distribution t o  be monotonic and decreasing,  

the Landau resonance should ordinarily contribute damping. 

F o r  a typical magneto- 

The par t ia l  growth r a t e  a t  the Landau resonance i s  proportional 

- 

8 F / a  l v l l l  will behave 

The net growth r a t e  i s  a competition between the damping Landau 

resonance and unstable cyclotron resonances.  

is  much lower than the cyclotron energ ies ,  t h e r e  will  be many m o r e  
Landau than cyclotron electrons,  emphasizing Landau damping. On the 

Since the Landau energy 

. 
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other hand, the Landau weighting function tends to  ze ro  as 9 - 0, and 

the (unstable) cyclotron resonance behavior dominates. Evidently there  

is a cr i t ical  angle 9 beyond which Landau damping predominates.  The 

magnitude of the cr i t ical  angle is cr i t ical ly  dependent upon the electron 

energy spec t rum in  the plasma, i. e. the relative number of par t ic les  at 

each resonance. 

Reproduced in  Fig.  1 is  a plot, taken f rom Kennel (1966), of 

the growth rate y(8), normalized to  its value at 9 = 0, for  e lectron 

velocity distribution of the form 

f(v,-0) = 4 0 

< <  , a = a = T r / 2  
0 

< <  , O = a = a  
0 

< <  
TI12 = a = TI--0 

0 

(1 .11)  

-1 
a = tan v, - /vll = pitch angle 

a. = opening angle of the magnetospheric loss  cone, 

- 1/20 radian a@ - 
The above pitch angle distributions are solutions of the approximate 

pitch angle diffusion equations which are satisfied when a finite whistler 

intensity is present  (KP, 1966). Thus the growth ra te  calculated f r o m  

this  distribution is consistent with the hypothesis of a steady non-zero 

turbulent wave amplitude. 

Because of precipitation into the lo s s  cone, 

automatically c rea t e s  an anisotropy which is unstable a t  the cyclotron 

resonances .  

F o r  details  of the solution, re fer  to  K P .  

pitch angle diffusion 

The growth r a t e  is plotted for values of p = 2, 3, 5. F o r  the 

spec t rum commonly found for  Van Allen electrons (McDiarmid et  al. 

(1964)), the whistler mode will be unstable over a cone of some 10' - 40° 

A p = 5 spectrum, on the other hand, is unstable only for  wave normal  

angles l e s s  than one degree to  the field, thus i l lustrating the sensitivity 

- 9- 
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Fig. 1 Whistler Growth Rate a s  Function of Wave Normal  Angle 

The growth at any angle 
value for s t r ic t ly  paral le l  propagation. When Landau 
electrons damp the wave, the growth r a t e  peaks at 
8 = 0; the maximum angle at which growth occurs  is a 
strong function of the energy spectrum. When Landau 
damping can be ignored, wave growth occur s  for  all 
angles.  

8 has  been normalized to  i t s  
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to  the electron energy distribution. 

damping may be neglected altogether, and the m i r r o r  pitch angle 

distribution provides instability a t  all wave normal  angles.  

Also shown is the c a s e  when Landau 

In summary,  pitch angle diffusion into the lo s s  cone c rea t e s  a 

pitch angle distribution, (1. ll),  which is unstable a t  the cyclotron 

resonances.  

dominate Landau damping will be significant only when: 

The cone of angles for which the unstable cyclotron resonances 

1) Landau electrons can be neglected altogether,  

o r  when 

2) The distribution of electrons with energy (between the 

two resonances) i s  not too steep. 

Of course,  i f  a F / a  I.-,,\ > 0, s o  that the Landau electrons a l so  c rea t e  

a positive par t ia l  growth rate, the whistler will be unstable for  all angles 

to  the field. 

2. GROWTH RATE O F  QUASI-TRAPPED UNDUCTED WHISTLER RADIATION 

2. 1 Introduction 

In the absence of external  wave sources ,  such as lightening- 

generated whistlers,  the necessary condition that whistler turbulence 

exist is that the net growth r a t e  integrated along the r ay  path,/yds/VG 

be positive. 

the number of resonant electrons,  a sufficiently intense flux of resonant 

e lectrons will ensure  satisfaction of the full c r i te r ion  (1 .6) ,  once the 

net growth has  been shown to  be positive. 

Since the magnitude of the growth rate is proportional t o  

F o r  the pitch angle distributions appropriate to  m i r r o r  con- 

figurations,  cyclotron electrons will always be destabilizing everywhere.  

Therefore ,  there  will always be a t  l eas t  local regions of positive wave 

growth where 'the waves propagate locally paral le l  to  the magnetic field. 

Kennel and Petschek argued on intuitive grounds that these  regions 

would dominate the net growth. However, as whist lers  propagate 

fur ther ,  their  wave normal  angle necessar i ly  changes, and Landau 

damping can become important.  Thus, whether o r  not whist lers  can  

grow hinges on the ro le  played by Landau electrons.  

-11- 



We discuss  briefly in  Section 2.  2 the  observational question of 

whether appreciable fluxes of Landau electrons exis t  near  the equatorial  

plane.  We conclude par t ly  that they probably a r e  not important, but 

mostly that more  observations a re  needed. 

pessimistically that a 1/EP energy spectrum extends between the cyclotron 

and Landau resonance, making a damping Landau resonance, and show 

that wave growth will occur  when p < 3. 

In Section 2.  3, we a s s u m e  

2. 2 

Since different  groups of Landau electrons a r e  associated with 

Do Many Equatorial  Landau Electrons Exis t?  

the precipitation into the atmosphere of cyclotron electrons of different 

energies,  it  is convenient to define Landau electrons in  t e r m s  of the 

cyclotron electrons a l s o  in  resonance with a given whis t le r .  

w/Q 1/2, the Landau and cyclotron energies  a r e  comparable  (roughly 

B /8nN)  and when w/Q 1/2, the Landau energy exceeds the cyclotron 

energy. 

s o  that he re  the cyclotron energy always exceeds the Landau energy. 

The estimates of the resonant energy fo r  a given wave depend 

upon the magnetic field strength and the total  number density through 

the parameter  B 2 / 8 n N  , which will undoubtedly va ry  with t ime  and 

space,  par t icular ly  in  the  a u r o r a l  regions.  

way the variation of B /8nN with rad ia l  distance f r o m  the Earth,  and 

for  the sake  of c la r i ty  we will use  these es t imates  h e r e .  

in  the Van Allen radiation zone, L z 3-5, the magnetic energy pe r  

par t ic le  a t  the equator was  estimated to  be 1-2 keV, while on the night 

When 

2 

W e  exclude f r o m  this  discussion those whist lers  with a/!d > 1/2 

K P  est imated in  a schematic  
2 

F o r  instance,  

s ide  au ro ra l  zone, BL/87rN at  L M 7 was  M 400 e V .  

in the density, this l a s t  value which was  based on a magnetic field of 

Because of uncertainty 

3 gauss and a total density of roughly 50/cm may well be in  e r r o r .  

Recently, Watanabe (1 965) has  suggested that the ac tua l  dens i t ies  may  

in  fac t  be considerably lower than this .  

the undistorted dipole value, and is probably a n  overest imate ,  (Ness ,  

19651, 

wards.  

follow, unless w/Q % 1/2, and so  we use the above e s t ima tes ,  in  ful l  

realization that they a r e  subject to  fu r the r  experimental  rev is ion .  

However, B N lo-’ gauss,  is  

S O  that  both B and N may well need to  be revised but both down- 
2 The exact value of B /8nN is not c r i t i ca l  f o r  the arguments  to  

-12- 
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As has  become clear ,  the magnetosphere has  severa l  dist inct  

regions where the (quasi-) trapped par t ic les  have different propert ies .  

Low energy electrons,  the order  of a few hundred eV to  a few keV, a re  

found on the day-side only beyond the magnetospheric boundary (Bonetti, 

et  a l . ,  1963) and are thus not of in te res t  here ,  and on the night-side on 

the au ro ra l  l ines of force,  only a t  distances grea te r  than roughly six 

Ear th  radii.(Gringauz, 1961, Freeman,  1964). Within the au ro ra l  zone 

surrounding the Ear th  at distances l e s s  than 6-8 Ea r th  radi i  is the so-called 

Van Allen stably trapped zone. 

observed to  have quasi-stationary propert ies  (Frank,  1965). Gurnett and 

F r i t z  (1965) observed a sha rp  spatial transit ion between regions of high 

fluxes of low energy ( in  their  case,  > 10 keV) electrons and high energy 

(> 40 keV) electrons near  the  Earth.  

intense in  the au ro ra l  regions where the > 40 keV fluxes became 

relatively weak. 

Van Allen regions separately.  Fur thermore ,  since the au ro ra l  regions 

are probably the m o r e  likely candidate for  having significant Landau 

effects, we treat them f i r s t .  

Here  fluxes of > 40 keV electrons a r e  

The > 10 keV fluxes were  only 

It is natural  therefore to consider the a u r o r a l  and 

As a n  extension of the picture proposed by K P  for  > 40 keV 

Van Allen electrons,  t o  lower energy au ro ra l  ( M  1-5 keV) electrons,  we 

tentatively identify the heavy aurora l  precipitation background (Sharp 

et al.,  1964, O'Brien and Taylor, 1964) with equatorial  plane pitch angle 

diffusion a t  the dominant cyclotron resonance of the whistler mode. 

th i s  s tep  requires  fur ther  justification, we concentrate h e r e  only on the 

ro l e  of Landau electrons,  assuming that the au ro ra l  cyclotron electrons do 

contribute to  wave growth. If B /8nN is 400 eV, an electron with a 1-2 

keV paral le l  energy will have a cyclotron resonance with whist lers  with 

Q/w M 4 (Eq. 1. 8). 

Landau energy for  the same whistler is thus roughly 100 eV. 

While 

2 

Then, substituting Q/w w 4 into equation 1. 10, the 

Thus, interesting Landau interactions probably occur near  the 

equatorial  plane with electrons in the hundred volt energy range. 

Unfortunately, experimental information on this energy range i s  spa r se .  

However, the existing evidence suggests that hundred volt e lectrons may  

-13- 
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not be ve ry  numerous in the a u r o r a l  zone. 

the integral  electron energy spec t rum is flat  between 180 eV and 1 keV 

in the a u r o r a l  regions near  the E a r t h .  

e lectrons with energies  of a few hundred eV and ve ry  small pitches in 

the equatorial  plane a r e  quite sma l l .  If the pitch angle distribution is 

not g ros s ly  anisotropic, we may extend this inference to the whole 

equatorial  distribution function in this energy range.  

does not guarantee an  isotropic distribution of Landau par t ic les ,  this 

mus t  r ema in  an assumption. Similar ly ,  O 'Br ien  and Taylor (1964) 

concluded that the number flux of 10 eV electrons precipitated in an  

a u r o r a  i s  no g rea t e r  than that of 1 keV electrons,  suggesting at l ea s t  

a f la t  number  distribution of precipitated electrons in the 10-103 eV 

energy range.  

Sharp  et  al. (1965) found that 

In other words,  the fluxes of 

Since turbulence 

O 'Br ien  and Taylor (1964) es t imated the average  energy flux 
2 deposited in the a u r o r a l  zone to be 3-5 e r g s / c m  -sec,  though occasionally 

L this flux may rise as high a s  roughly 1000 e rgs / cm - sec .  

and Laughlin, 1962, Sha rp  et  a l . ,  1964). The  bulk is  in  the 1-10  keV 

energy range (Sharp, e t  a l . ,  1965). Since this  is a precipitation flux, 

we may a s s u m e  that a pitch angle diffusion process  keeps the pitch angle 

distribution reasonably isotropic .  Therefore  3-5 e rgs /cm2-sec  i s  prob- 

ably a reasonable es t imate  for  the energy flux in space,  bar r ing  

significant energization along the l ines  of fo rce  between the equatorial  

plane and the au ro ra l  zone. 

2 keV, then 3-5 e rgs /cm2-sec  corresponds roughly to  a flux J (>2  keV) 

above2 keV of roughly 1 - 2  x 10 /cm - sec  which is in  reasonable  a g r e e -  

ment with the available m e a s u r e m e n t s  i n  space.  ( F o r  a review of these 

measurements ,  s e e  the a r t i c l e  by N e s s  (1965)). 

(O'Brien 

If the mean energy of the precipitating electrons is  taken to  be 

9 2 

Suppose we pick a distribution function of the form,  (1 .  11) 

1 
f "vlp g ( P )  

where  p denotes the velocity space  solid angle .  F o r  this  distribution, 

- 14- 
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J(>v), the flux above the speed v is proportional to  v4-"; E(> v), the 

fractional energy density above v, is  a l so  proportional to v4-", while 

n(,v) the fractional number density > v is proportional to v3-2p. Note 

that n(>v) = J(>v)/v. 

to a number density n(>v) of (1/2- l ) /cm . 
9 2  The flux J(>2 keV) of 1-2 x 10 /cm -sec  corresponds 

3 At the velocity corresponding 
to  100 eV, n(>v) would therefore  be roughly (1/2-1) x (20) (3P-3)/2 using 

the above fo rm for  the distribution. 

electrons/cm3 above 100 eV, probably unacceptably high i n  view of 

Watanabe's (1965) r e su l t  fo r  the total  density. Certainly, the p = 3 

spec t rum cannot extend to 10  eV, and p = 4 i s  definitely out of the 

question. We conclude, both f rom a u r o r a l  zone data (Sharp, et  al. , 
1965) and a l so  these rough estimates that p is most  likely sma l l e r  

than three  i n  the au ro ra l  zone. 

When p = 3 this  yields roughly 85 

The Van Allen zone should therefore  a l so  be relatively f r e e  of 

Landau electrons.  

resonance with a n  electron having 40 keV para l le l  energy will have 

C~/W M 20 so that the Landau electrons again have energies  the o rde r  of 

a hundred eV. 

> 40 keV a r e  roughly 3 x 10 /cm2-sec (Frank, 1965) corresponding to  a 

fract ional  density of 3 x 10 and a mean energy density of perhaps 

E(> 40 keV) x 2 x 10-l '  ergs/cm3. 

function to  100 eV, we find e (> 100 eV)  M 2 x 10 

When p = 3 , E ( >  100 eV) M 10 This would create a 

diamagnetic distortion the o rde r  of 500 y i n  the geomagnetic field, which 

is  unacceptably high, and so p is probably less than 3 in  the Van Allen 

zone. 

If B2/8aN M 2 keV typically, the whistler in  cyclotron 

Typical equatorial plane fluxes of Van Allen electrons 
7 

-3 3 
/cm 

Extrapolating the distribution 
-10 3 (400)'-' ergs/cm . 

-6 3 e rgs /cm . 

Sharp, et al. (1965) found an  upper limit of at most  lo - '  e rgs /  

cm2-sec  precipitated to  the atmosphere in  the fo rm of electrons > 180 eV 

at lati tudes below the a u r o r a l  zone. 

equatorial  plane and comparing with the energy f l u x  implied by the number 

flux est imate  J(>40 keV) x 3 x 1 0  /cm -sec,  roughly 1 erg/cm -sec, 

suggests  that  p 0 i n  the Van Allen regions.  

Extrapolating this  flux t o  the 

7 2 2 

These extremely crude arguments indicate that the distribution 

with energy of e lectrons between the cyclotron and Landau energies is 

-15- 



probably ha rde r  than p = 3 fo r  both the Van Allen and the au ro ra l  zones. 

The whistler mode growth ra te  is independent of the detailed behavior of 

the distribution between the Landau and cyclotron energy, 

choice l /vZp for the dependence on the particle speed only weights the 

relative number of particles at the two resonances.  As we shal l  show, 

any distribution for  which the relative number of Landau and cyclotron 

electrons can be parametr ized by a p < 3 will probably be unstable to 

unducted whistler growth in the magnetosphere. 

The schematic 

2. 3 Numerical Computation of the Growth Rate Along a Ray Pa th  

Referring to  equations (1. 8) and (1. 9), we s e e  that the cyclotron 
3 energy will vary a s  B /N cos 8 and the Landau energy a s  B/N cos 8 ,  a s  

measured  following the r ay  path. Since the group velocity never diverges  

great ly  f rom magnetic field direction, the ray path i s  approximately along 

the line of force. Then, i f  N i s  roughly constant along the l ines of force,  

the resonant energies for  a given wave will be lowest in the equatorial 

plane and increase  rapidly up the line of fo rce  away f rom the equatorial  

plane. If the electron distribution i s  monotonic decreasing with increasing 

energy, the wave will encounter the grea tes t  intensity of locally resonant 

e lectrons a s  it c ros ses  the equatorial  plane. On the other hand i f  the 

energy distribution has a maximum somewhere between the minimum 

Landau energy along the ray  path and the cyclotron energy range, it is 

possible that the wave will encounter the g rea t e s t  number of Landau 

electrons not in the equatorial plane but a t  some higher latitude. 

then it i s  likely that 

will thus be unstable over an  appreciable portion of the r ay  path. 

fore ,  i t  s eems  reasonable that a n  electron distribution of the form 

However, 

Iv,, 1 will be positive, and the Landau electrons a F / a  
There-  

p > 0, gives a pessimist ic  es t imate  of stability s ince i t  has  la rge  

numbers  of low energy damping Landau electrons.  

in  proving that some whist lers  a r e  unstable, it i s  natural  to  choose f o r  

consideration those which a r e  propagating near ly  paral le l  to the magnetic 

field in  the equatorial plane because unstable cyclotron effects a r e  

s t rongest  fo r  this case.  We then follow the r a y  path to  higher latitudes 

to evaluate the effects  of the change i n  the wave no rma l  angle 8 and the 

Since we a r e  interested 
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' 
progressively m o r e  important Landau effects. 

a ray  path is  positive, instability is s u r e  to occur when the trapped 

fluxes a r e  sufficiently intense. 

the normalization of f .  

If the net growth along 

Therefore ,  i t  is not necessary  to  fix 

The rat io  of the total whistler mode growth (o r  damping) r a t e  as 

a function of wave normal  angle e to  the dominant m = -1 cyclotron 

growth rate at 8 = 0 for the turbulent e lectron distribution ( 1 .  11) was 

evaluated by K. 

space as (B /N)-', s ince it is proportional to  the number of par t ic les  

in  cyclotron resonance, and since f - l/vZp. 

growth r a t e  at any point to that a t  the equator. 

along the ray path, fixing the energy of the Landau par t ic les  and the 

magnitude of their  contribution. We take both m/Q and cos e f r o m  the 

cold plasma ray path calculations discussed above (T)  and use  them to 

calculate y(s, e ) ,  the local growth increment.  

f r o m  the equator along a cold-plasma ray  path to  a given latitude X' , 
presumably that of a reflection point, the net growth I' along the path i s  

The local growth r a t e  for  the wave at 8 = 0 va r i e s  with 
3 

We normalize the paral le l  

Both w / n  and cos 8 vary  

F o r  a whistler propagating 

H e r e  we have normalized the group velocity V 

the i r  values at 8 = 0 and X = 0. 

length s with latitude X . 

and the growth r a t e  to  G 
(ds/dX) is  the r a t e  of change of path 

Choosing p = 2, 3 and initial equatorial wave normal  angles 

eo = -20°, Oo; t 20° ,  we have plotted on Fig. 2 computations of the 

integrand of (2.6),  the growth i n  one element of ray  path, as a function 

of magnetic latitude. A wave with negative 8 points towards the Ea r th  

i n  the meridian plane, and vice v e r s a  for  e > 0. The integrals will 

c lear ly  be positive (unstable) for p = 2, negative (damping) for  p = 3. 

If the equatorial  cyclotron electron fluxes a r e  sufficiently intens e, 

growth is assured .  . 
-17- 
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Fig. 2 Local Growth Rate along Unducted Whistler Ray Pa th  as 
Function of Geomagnetic Latitude 

The curves converge to  zero rapidly because the number 
of e lectrons locally in  resonance diminishes with increasing 
latitude. If p = 2, the a r e a  under these  curves  is  positive 
indicating growth, p = 3 implies  damping. The waves 
chosen h e r e  with init ial  equatorial  wave normal  angles  
eo of - Z O O ,  0, 
towards the Ear th  respectively i n  the mer id ian  plane) a r e  
expected to have important cyclotron growth effects. 

0 t20 (where f denotes pointing away o r  
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Landau interactions do not dominate the cyclotron resonances 

This in  until the wave normal  angle has  some finite non-zero value. 

tu rn  implies  that the whistler must propagate some distance f rom the 

equatorial plane. 

and a l so  the wave group velocity inc reases  in  this model s o  that  whist lers  

do not feel the resonant interactions for as long a t ime as at the equator. 

These effects reduce the strength of high latitude resonance interactions.  

F o r  p = 3, the angle at which Landau damping dominates is  1 0  . Here  

the eo = -20 

regions of damping. The p = 2 spec t rum has  a cr i t ical  angle of 40 , 
and the la rge  cyclotron growth region near  the equator is  sufficient to 

make  the whist ler  unstable overall. 

But then the number of resonant electrons decreases ,  

0 

0 0 and 0 waves have only very sma l l  regions of growth, l a rge  
0 

3 .  DISCUSSION 

Due to  the anisotropic loss-cone pitch angle distribution 

charac te r i s t ic  of m i r r o r  magnetic configurations, cyclotron electrons 

always make  whist lers  unstable over that  portion of their  ray path where 

the waves propagate sufficiently parallel  to  the magnetic field. I f  th is  

segment of the r ay  path is sufficiently long that the growth on this portion 

exceeds the damping elsewhere on the path, and any other non-resonant 

l o s ses  of wave energy, overall  convective whistler growth will ensue. 

If the paral le l  segment of the ray path is  located in the equatorial plane, 

the local whistler growth increment will be la rges t  since there  a r e  the 

mos t  cyclotron electrons at the equator. 

segment depends on the cr i t ical  wave normal  angle 8 

damping dominates cyclotron growth, and the r a t e  at which the wave 

no rma l  angle approaches the cr i t ical  angle 8 
4 8 depends pr imar i ly  upon the energy spec t rum between M 100 - 10 eV, 

while the ra te  of change of e depends upon the index of refraction, which 

in turn  depends upon the magnetic field strength B and the number 

density N.  

The length of the growth 

a t  which Landau 
C 

as the whistler propagates. 
C 

C 

The re  a r e  observational uncertainties connected with both the 

The Landau electron component and also the total number density N. 

number density of hundred volt Landau electrons near  the equatorial  
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plane i s  not well known. 

significant extent in the au ro ra l  zone and presumably would make  at best  

a smal l  contribution to the total density measurements  made by the 

whistler mode technique. 

density of Landau electrons,  but it is a l so  necessary  to have information 

on the velocity-space gradients of the electron distribution in  this energy 

range. As  Yakimenko ('1963) and others  have pointed out, quasi-l inear 

diffusion due to plasma turbulence smooths out the velocity distribution 

and reduces the Landau damping rate .  In a steady diffusion process ,  i t  

i s  thus important to  identify the sources  and sinks in velocity space of 

Landau electrons.  These, in  turn,  would fix the growth (or  damping) 

ra te .  If it could be established that the distribution of Landau electrons 

increases  with increasing paral le l  velocity ( a F j a  (v , ,  I > 0), the Landau 

electrons would also be a source  of whistler instability. 

They a r e  apparently not precipitated to  any 

Note that it is not sufficient to know the number 

Since the Landau effects only become important when the whistler 

has  a finite wave normal  angle to the geomagnetic field, ducted whist lers  

would probably not be affected by Landau electrons s ince the ducts keep 

the wave normal  angle fairly small. 

spectra ,  p 5, however, the Landau damping dominates cyclotron growth 

at wave-normal angles l e s s  than a degree,  and in this case ,  may  be  

important even for  ducted propagation. 

F o r  very s teep electron energy 

The total electron density nea r  the equatorial  plane can be 

measured  by whistler mode techniques (Helliwell, 1965). However, 

there  seems  to  be some uncertainty about the var ia t ion along the l ines 

of force.  The model of T, N = constant along the l ines of force,  gives, 

a t  least  intuitively, the fas tes t  r a t e  of change of wave normal  angle 

along the ray  path. It i s  unlikely that N dec rease  towards the Earth.  

Thus, N = constant yields the m o s t  rapid physically acceptable dec rease  

of N/B.  

to compensate. 

shortest  when N is constant. On the other hand, the group velocity 

increases  the most rapidly away f r o m  the equatorial  plane when N is 
constant so  that the higher latitude damping effects at l a rge  wave 

normal  angles a r e  not weighted as heavily. 

given fur ther  consideration. 

0 then will probably change the most  rapidly with propagation 

This suggests that  the unstable path lengths will be 

These  effects  should be 
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Since unducted whistler growth probably depends to  some extent 

on the propert ies  of low energy electrons,  any inc rease  in the low energy 

component without a corresponding increase  i n  the cyclotron electrons is 

a possible candidate for  enhanced Landau effects. Such an  increase ,  the 

so-called "knee, ' I  is  observed in the region L = 2. 5 - 3 .  5 in  the magneto- 

sphe re  (Carpenter  (1963)). 

the fact that 

density s ide of the "knee" is tantalizing. 

While many questions remain to  be answered, 

V L F  emissions tend to  occur preferentially on the low 

The calculations contained in Section 2. 3 ,  based on what appear t o  

be  fair ly  stringent assumptions,  suggest that t he re  i s  at least a thin 

region near  the equatorial  plane, roughly 20° in  latitude width for which 

whistler growth occurs .  When the energy spectrum is sufficiently hard, 

i n  this  c a s e  1/E , this growth dominates the Landau damping which takes 

place along the rest of the ray  path. Thus it appears  that a finite whistler 

intensity can be generated and that the conclusions of K P  c a r r y  over to the 

possibly m o r e  realistic case  of an  unducted whist ler  distribution which has  

a var ie ty  of wave normal  angles. 

the i r  conclusions may be valid for the au ro ra l  as well a s  the Van Allen 

radiation zones. 

would resolve this question. 

2 

Depending on the Landau electron distributic , 

Information on the distribution of hundred volt electrons 

W e  have concentrated throughout on the conditions for  which a steady 

l a s e r  action of the magnetosphere trapped electron and whistler population 

can  occur. In this case,  whistler radiation which is reflected back towards 

the equatorial  plane and reamplified there  is  the dominant component of the 

wave distribution. One reflection mechanism, involving the lower hybrid 

resonance, was suggested in T. This necessar i ly  occurs  well away f rom 

the  equator, and the Landau damping must  be small on the high latitude 

portions of the r ay  path t o  ensure net wave growth. 

it occurs ,  efficiently produces large wave amplitudes and therefore  

precipitation. 

intensi t ies  for  the onset of precipitation in  this  regime. 

This mechanism, when 

One would expect the smallest cr i t ical  trapped electron 

Sudan (1965) has  shown that cyclotron electrons with a la rge  

pitch angle anisotropy a r e  non-convectively unstable to  paral le l  pro-  

pagating whistlers.  In effect, whistlers with small group velocities are  

-21- 



. 
always amplifying. 

so  fo r  those off-angle waves for which Landau damping is negligible, 

since the unstable electrons a r e  those propagating in the opposite d i r ec -  

(One expects on intuitive grounds that this will be 

tion to  the wave.)  W e  have concentrated on the convective par t s  of the 
whistler instability on the p remise  that the convective growth ra tes  a r e  

likely to  be la rger  than the non-convective, and with some feedback o r  

external source,  will therefore  probably dominate. However, the medium 

itself is probably unstable to  whistler growth whether o r  not reflection 

occurs .  

As the density of low energy Landau electrons is  increased,  the 

path length of the region of wave growth decreases ,  and that of Landau 

damping increases  to become the dominant effect. The waves generated 

at the equator a r e  then absorbed elsewhere on the line of force,  and l a s e r  

action i s  probably not possible. 

whistler -driven electron precipitation cannot occur.  

is  a sufficiently la rge  whistler amplitude somewhere along the l ine of 

force.  The natural  fluctuations of the plasma radiation fields, which 

should be themselves well above thermal  levels because of the l a rge  

non-thermal tail of the velocity distribution, a r e  a n  input source  for  

whistler growth. When the trapped electron intensity i s  sufficiently 

high, a la rge  whistler amplitude, and therefore  precipitation rate ,  can 

be achieved starting with the fluctuation source  and propagating through 

the growth region, however narrow. Since the  increment  in  wave 

amplitude depends only logarithmically on the trapped electron intensity, 

o rde r s  of magnitude inc reases  in electron intensity a r e  not needed. I t  

s eems  likely that a t  l eas t  the very high fluxes of a u r o r a l  e lectrons can 

precipitate in this way, perhaps on a non-steady basis .  The essent ia l  

point is that whistler growth always occurs  fo r  para l le l  propagating 

waves. 

normal  angles, this means that wave growth i s  likely to  occur  over some  

fraction of the ray path. 

electron intensities i s  bound to exist. 

However, this does not mean  that 

All  that  is needed 

Coupled with the fact  that unducted whis t le rs  change the i r  wave 

Thus, an upper limit to  stably trapped cyclotron 
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